
Creating Interactive Mathematics Web Pages Using CaluMath

Introduction: CaluMath is free software designed for the creation of interactive web pages involving
mathematics. CaluMath pages are written entirely in HTML, which is the standard markup language
for web pages, and JavaScript, a well-known programming language native to web browsers that
allows pages to be dynamic. Web pages constructed using CaluMath can display graphs or animations
and contain all of the items commonly found in web pages, such as text boxes, drop down menus, and
buttons that allow the user to provide input, make selections, manipulate graphs, answer questions, and
interact with the pages in a meaningful way. In response to user interaction, items on the page can
appear or disappear, graphs can be drawn or modified, new windows opened, new information
displayed, or contrasting scenarios presented. Correct user answers can be challenged with a new
scenario to see if the answer was the result of a memorized algorithm. Incorrect user responses can lead
to activities that help the user see their response as problematic in terms of other knowledge the user
possesses.

The interactive CaluMath web pages are constructed using the CaluMath Page Maker, a web
page interface designed for the easy construction of CaluMath pages. The CaluMath Page Maker main
menu is a table listing all of the mathematical and web objects that can be created using CaluMath.
When a page author selects an object, a screen appears with boxes and menus pertaining to the
construction of the object. The author selects the properties of the particular object that she wants, and
clicks a button to finish. This returns her to the main menu where the process can be repeated. Using
this procedure, functions and random numbers can be defined, graphs created, points plotted, and
tangent lines drawn. In the same manner, titles, paragraphs, tables, menus, text boxes, and buttons can
be created. The actions that occur when a user clicks on a button or graph are also created in a similar
fashion. No knowledge of HTML or JavaScript is required.

The CaluMath Page Maker can load any saved CaluMath web page, regardless of who authored
it. When this is done and the Edit button is clicked, a window opens that reveals the structure of the
page and lists all the items created. This gives someone who did not construct the page the ability to
modify it and save it to their own web site.

CaluMath is not tied to a particular mathematical content or grade level and can be employed at
any level of the K-12 school curriculum and at the junior college and university levels. CaluMath pages
employ standard HTML and JavaScript, ensuring that they will not become obsolete as technology
changes. CaluMath is open-source software and is licensed under the GNU license.

Note that everything in CaluMath runs in a web browser, therefore you do not need to install
anything on your computer.

The Components of CaluMath:

1. The CaluMath program consists of libraries of JavaScript code written specifically to enable
web pages to display meaningful mathematics and allow users to interact with it. Users of
CaluMath do not need to concern themselves with the underlying program.

2. The CaluMath Page Make is a web interface that allows users to construct their own interactive
web pages and modify pages constructed by others.

3. The CaluMath web pages that have been authored using the CaluMath Page Maker can be used
by anyone without any training. They can be employed by being projected in front of a

1

classroom or assigned as homework.

 Everything in CaluMath runs in a web browser, therefore you do not need to install anything on
your computer. You can download the entire CaluMath web site and save it to your hard drive and open
CaluMath web pages by clicking on the files; there is nothing to install. When you interact with a
CaluMath web pages on the internet, all calculations are done on your computer, no further connection
with a web site is necessary. This means that instructors can create CaluMath pages and place them on
their web sites just as they would place any other web page there. In particular, you do not need to
configure your web server in order to host CaluMath pages.

CaluMath design criteria: CaluMath was designed to meet three objectives:

1. CaluMath is designed to be available to the widest possible audience, including all grade
levels K-16. To meet this objective, CaluMath is web-based, open source, and does not rely on
plug-ins.

2. CaluMath is designed for mathematical education and produces fully functional web
pages. The page designer controls the functionality that the student can bring to a given
task and the responses the page makes to user interactions. A page designer can display or
not display the equation of a graph that is presented, can reveal or hide the scaling of axes in a
graph, allow or preclude the student from ascertaining exact coordinates of points on the graph,
and include or not include the functionality to draw tangents to a curve at a given point. This
allows the page designer to take students outside of their comfort zone by not giving them the
tools they would normally rely on in a given situation, thus forcing them to contemplate a
scenario in more than one way. Equally importantly, the page designer chooses how students’
responses are to be evaluated by the page; for example, if a student drags a graph, the page can
determine the new position and provide the student with questions dealing specifically with the
new position. This cycle of capturing student’s responses or interactions with the page in order
to provide new questions or scenarios is one of the distinguishing features of CaluMath. In
addition, since CaluMath pages are fully functional web pages, CaluMath pages can respond to
the user in many ways, such as displaying a paragraph analyzing what the student did, graphing
arrows that point out features to which the student should pay attention, opening a new window
containing new information or graphs, or displaying buttons that provide a graph with new
functionality that the student can now employ.

3. CaluMath pages can be continually improved by the mathematics and mathematics
education communities, leading to cycles of creation, evaluation, improvement, and
adaptation. A previously constructed CaluMath page can be opened by anyone using the
CaluMath Page Maker; the structure of the page will be revealed and modifications can be
made. Changes can be in response to the latest research in mathematics education, assessment
results, or simply because a new instructor has a fresh perspective. Once the changes are made,
the instructor can post the page on their own web site, share it with their peers, the original page
author, and the mathematics community in general.

Current Version of CaluMath: Version 1.01 is currently on the CaluMath web site:
http://ems.calumet.purdue.edu/mcss/psturbek/CaluMath/CaluMath_HomePage.html.
Version 2.0 will be released by Summer 2010. The Beta version of the CaluMath Page Maker for this

2

http://ems.calumet.purdue.edu/mcss/psturbek/CaluMath/CaluMath_HomePage.html

new version is available now, and will be used in this tutorial. It can be found here:
http://mathvserver.calumet.purdue.edu/~psturbek/CaluMath/CaluMath Beta Home Page.html

The 2.0 version of CaluMath contains significant improvements in terms of ease of use of the
CaluMath Page Maker. Since it is still in Beta testing, it may have tiny bugs. The Beta version works
very efficiently in the browsers Firefox, Google Chrome and Safari. It currently works sluggishly in
Internet Explorer and Opera, because we have not completed the code optimization yet for this release.
When CaluMath 2.0 is released, it is expected to work well in all major browsers. CaluMath is also
compliant with older versions of many web browsers.

How Do I Put CaluMath On My Web Site?

To place CaluMath on your web site, you merely need to copy CaluMath web pages and some
supporting library files to your web site. There is nothing to install, and your web server does not have
to be configured in any way. There are two ways to do this.

 1. Go to the CaluMath web site, and download the zip file that contains the entire web site. Unzip
it on your hard drive. Then copy the entire CaluMath folder to your web server. You can then
place any CaluMath Pages you create on your web server in the MyWebPages directory.

 2. To place your own CaluMath web pages on your web site, you do not need to actually upload
the entire CaluMath web site to your web server as described above. We now describe the
minimum number of files and folders you need to place on your web server. To do this, do the
following. Go to the CaluMath web site and download the zip file that contains the entire web
site. Unzip it on your hard drive. You should use the CaluMath Page Maker (run off your own
computer) to create web pages. When you want to place them on your web server, this is the
minimum number of files and folders you need to create.
 a) Create a folder named CaluMath on your web server.
 b) Go to the copy of CaluMath on you computer and find the library folder inside the

CaluMath directory. Copy this entire folder to the CaluMath folder you just created on your
web server.

 c) Copy the MyWebPages folder to the CaluMath folder you just created on your web server.
 d) Place any CaluMath pages you create in the MyWebPages folder on your web server.

After you have completed either steps 1) or 2) above, you should be able to go to any web page on your
server in the MyWebPages folder and open it in your web browser and it should display correctly.

Once you have CaluMath on your web server, you may want to create special folders for specific types
of pages. For example, suppose you want to create a folder called Algebra in which you will place
CaluMath web pages you create. To do this, you must observe the following.

1. The Algebra folder must be created somewhere inside the CaluMath folder. The Algebra folder
can be placed directly inside the CaluMath folder, or it can be placed in any folder inside (or a
folder inside a folder inside etc.) the CaluMath folder.

2. The following files must be placed inside the Algebra folder:
place_this_in_folder_with_web_pages_vml.html, place_this_in_folder_with_web_pages.svg,
place_this_in_folder_with_web_pages.js, and place_this_in_folder_with_web_pages.html.
These files are necessary for the CaluMath pages in the Algebra folder to work correctly. You
can cut and paste them from the MyWebPages folder into the Algebra folder.

3. Never delete the four files above from the MyWebPages folder.

3

http://mathvserver.calumet.purdue.edu/~psturbek/CaluMath/CaluMath%20Beta%20Home%20Page.html

Tutorial

This tutorial is divided into two parts.
1. An overview of CaluMath including defining functions, constructing graphs, creating buttons,

opening and saving pages.
2. The construction of a fully functioning web page in which two points are plotted and the graph

of a cubic function h whose local maximum and minimum occur at the two points is displayed.
The graph of h′ is also displayed. The user is asked to drag the points so that h(3) = h′(3) +12.
The user's answer is checked and appropriate responses are displayed.

Although we want to produce a functional web page in 2) above, we will do so in a roundabout manner
that allows us to discuss features in CaluMath in greater depth.

Preparation:

To construct a CaluMath web page, you need to download the CaluMath Page Maker to your computer.
Go to the Beta version of CaluMath at
http://mathvserver.calumet.purdue.edu/~psturbek/CaluMath/CaluMath Beta Home Page.html
download the zip file to the desktop your computer, and unzip it there. This should created a folder
named CaluMath on your desktop. Note that, once the CaluMath folder is created, it can be placed
anywhere on your computer. The only restriction is that it cannot be placed in a folder that has
CaluMath as part of its name.

Open the CaluMath folder on your computer, and use the Firefox web browser to open the file named
CaluMath_Page_Maker.html that is inside the CaluMath folder. If you do not know how to open the
file with Firefox, do the following: right click on the file, and in the menu that pops up, go down to
Open With, and click on Firefox in the new small menu that pops up. If Firefox does not appear in the
small menu, click on Choose Program and look for Firefox there. Although the CaluMath Page Maker
can be opened in any web browser, Firefox provides helpful warnings which can often be used to find
errors, for example, if you type sinn(pi) instead of sin(pi).

Once you have the CaluMath Page Maker opened, you should observe the following precautions:

1. Never use your browser's back or forward buttons. If you navigate away from the CaluMath
Page Maker, you will lose any unsaved information.

2. If your web browser has a pop up blocker, it should be turned off. To do this in Firefox, go to
Tools and then Options. Click the Content item and then make sure that Block pop-up windows
is unchecked. After doing this, you may need to close your browser and then open it again for
the changes to take place.

Below is a screen shot of the CaluMath Page Maker. I f you click on an item in the Main Menu, a sub-
menu opens listing the items in that category that can be created. Clicking on an item takes you to a
screen for the creation of that object. Each type of object has options pertaining to it from which you
can select. When you are finished creating the object, you exit the screen and are returned to the main
window of the CaluMath Page Maker with the Main Menu visible. After creating one or more objects,
you can click the View item at the top of the page to see the page you have created. If you click the Edit
item, you are taken to a screen that lists the items you have created; clicking on an item takes you back
to the screen where the item was created. You can also edit an item by selecting it from the menu that
appears below the Main Menu and clicking the Edit Selected Item button.

4

http://mathvserver.calumet.purdue.edu/~psturbek/CaluMath/CaluMath%20Beta%20Home%20Page.html

We will begin by creating a title for our page, we will define several constants and functions, and create
several graphs. This will give us a feel for how the CaluMath Page Maker functions and also allow us
to discuss several key ideas that are important to keep in mind while constructing CaluMath web pages.

Title: To construct the title, click the Text and Html item in the Main Menu and click Text in the sub-
menu that opens. Select Title in the Text Type menu, in the Text Size menu select x-large, in the Bold
menu select bold, select center in the Alignment menu, and then type the text for your title in the large
text area as is shown in the screen shot below. Click the Finish Text button, which returns you to the
CaluMath Page Maker main window.

5

View Page: To view the page we have created so far, click the View item at the top of the page. The
page we are creating will appear in a box, whose technical name is an iframe, that appears near the
bottom of the CaluMath Page Maker. The page contains the title we are creating and an extra button
labeled Click Here to Edit Text. This button only appears while you are constructing the page with the
CaluMath Page Maker; after you save your page this button will not appear when you open it in a web
browser. Click on the button now, and then click on the title and observe that it takes you back to the
screen where you created the title. You can modify the title if you want; click the Finish Text button to
return to the CaluMath main window.

Constants: We will construct two constants, the constant A=2 and a constant B that takes on a random
nonzero integer value between -4 and 4. Click Functions and Constants in the Main Menu and click
Define a Constant in the sub-menu.

The screen that appears consists of two tables. The bottom table consists of required fields that must be
filled out. The top table consists of options that can safely be ignored until you become more familiar
with CaluMath. Between the two tables is a help button. The screens for the construction of almost all
objects in CaluMath have a similar layout, with required fields in the bottom table, options in the top
table and a help button in between the two tables.

In the Constant Name field, enter A. In the Constant Definition field, enter 2. Since we want to also
create the constant B, instead of clicking the Finish Define a Constant button, click the Finish Define a
Constant and Do Another Define a Constant button. This saves the constant A that we just created and
allows us to define another constant. A pop up window will tell you that you finished one constant and
can now create another one. Close the pop up window. Note the CaluMath Page Maker leaves all of the
fields as they were; this is helpful if you want to create several constants with similar properties. Note
however, that an asterisk is put next to the name A; this forces us to change the name.

6

Change the A* in the Constant Name field to B. Click the Create A Random Number button. This
opens a new menu that is shown in the screen shot below. Select NonZero Random Integer and enter -4
and 4 for the range of the integer (both -4 and 4 will be included as possible values for the integer).
Click the Create the Random Number button. This places the correct CaluMath code for the random
number in the Constant Definition field and hides the Random Number menu. Click the Finish Define
A Constant button to return to the CaluMath Page Maker Main window.

If we click the View item at the top of the CaluMath Page Maker, we only see the title of our page.
Although we defined two constants, we have not done anything with them in the page. We will now
create a paragraph that displays the values of A and B. This is done exactly the same way we created a

7

title: Click on the Text and Html item in the Main Menu, and click the Text item in the sub-menu. In
Text Type, select Paragraph. In the large text box, type the following:

A=cm_evalm(A), B=cm_evalm(B), and Unicode(pi)= cm_evalm(CM_Round(pi,3)).

Text and Number Fields: Let us discuss the above entry for a moment. In CaluMath, you should keep
in mind whether you are typing something into a field that expects text, or a field that expects numbers
and mathematical expressions yielding numbers. Fields that expect text do not evaluate your input in
any way, they merely copy what you write. For example, if you type This is pi, a text field does not try
to determine what you mean by This or is or pi. If you want a mathematical expression evaluated in a
text field, you must enclose the expression in parentheses and enter cm_evalm in front of the
parentheses. This will force the enclosed item to be mathematically evaluated. You can only use this
for mathematical expressions that evaluate to numbers. Therefore the above text will be evaluated
as follows:

1. A=cm_evalm(A) will produce the text A= and then display the value of A in place of
cm_evalm(A).

2. B=cm_evalm(B) will produce the text B= and then display the value of B in place of
cm_evalm(B).

3. Unicode(pi)= cm_evalm(CM_Round(pi,3)) does the following. Unicode(pi) tells CaluMath to
replace pi by the Greek letter π. This can be done for any Greek letter, for example
Unicode(delta) and Unicode(Delta) produce δ and Δ respectively. CM_Round is the CaluMath
rounding command, you can use it to round an expression to a given number of decimal places
(from 0 to 12 decimal places). Therefore CM_Round(pi,3) rounds π to 3 decimal places, in
order to get the value 3.142 to appear in the page, you must enclose it inside the parentheses in
cm_evalm(). Incidentally, instead of entering the number of decimal places, you can also enter
either .25 or .5; these values round the expression to the nearest quarter or half respectively.
These are particularly useful when dragging graphs (which will be discussed later). Therefore
CM_Round(pi, .25) yields 3.25 (rounded to the nearest fourth) and
CM_Round(pi, .50) yields 3 (rounded to the nearest half).

In CaluMath, you may also define objects that are not numbers, in this case you should use cm_eval()
to evaluate them; the difference is that cm_eval() evaluates the object, while cm_evalm() evaluates the
object mathematically to a number. For example, cm_evalm(pi) yields the number 3.14..., however
cm_eval(pi) produces an error, since pi itself has no meaning in CaluMath.

Note that cm_eval() and cm_evalm() can be used in any text field when you want something
evaluated. You never need to use them in a field that expects numbers. CM_Round is one of
several mathematical commands; these commands can be used in any field that expects numbers. In
general, all commands and special expressions in CaluMath have either the prefix cm_ or the
prefix CM_.

Click the Finish Text button to save the paragraph and return to the CaluMath Page Maker main
window. Click the View item at the top of the page to view the page we have created. You should see
the title along with a paragraph that says A=2, B=4, and π= 3.142, although the value of B will depend
on the random integer created by CaluMath. At the top left of the constructed page, you should see a
Hide Constructed Page button. Click on it to return to the main window. If you click the View item
again, a new page will open which will probably have a different value of B defined. You can click the
View item and the Hide Constructed Page button several times to see the different values of B
produced.

8

Functions: We now define the functions f(x) = x^2 and g(x) = B*x^2. In the Main Menu, click
Functions and Constants and click Define a Function in the sub-menu. Again, two tables appear, the
lower table contains required fields and the upper table contains options. The help button yields
extensive help, since you can use the options table to create very powerful, and easy to use, functions
(which we will see in a few minutes). For now, enter f in Function Name, x in Function Variable, and
x^2 in Function Definition. Click the Finish Define A Function And Do Another Define A Function
button. This saves our definition of the function f and allows us to create another function. In the new
screen that appears, replace the f* in Function Name with g, and enter B*x^2 in Function Definition.
Note that you must use a * to represent multiplication. Although we do not need them here, keep in
mind that you should liberally use parentheses to ensure your expressions are interpreted correctly.
Click the Finish Define A Function Button.

Axes: We now define a set of axes. In the Main Menu, click on Axes and Graphs and click on Draw
Axes in the sub-menu. There are a large number of options for axes, as evidenced by the large table
above the Help for Draw Axes button. For the moment, we will ignore all of the options. Almost every
object in CaluMath must have a name; so enter Axes1 in the Axes Name field. You can leave the default
values of 6 and 5 for Plot Width and Plot Height, this corresponds to 6*72=432 and 5*72=360 pixels
on your computer screen, or 6 inches by 5 inches if you print the axes on a piece of paper. Alternately,
you can enter the number of pixels directly into the Plot Width and Plot Height fields (CaluMath will
interpret any large number in these fields as being in pixels). Let us change the Beginning and Ending
X values to -5 and 5 respectively. We can leave the beginning and ending Y values with the word
default; this will allow the axes to automatically adjust to the graphs we plot. Click the Finish Draw
Axes button.

Graphs: We now graph the function f(x) = x^2. In the Main Menu, click Axes and Graphs and click
Graph of a Function in the sub-menu. In the screen that opens, menus will list all of the axes you have
constructed and all of the functions you have defined. In the Axes field, select Axes1 (there will be no
other choice, since we have not created other axes) and in the Function field, select f. Leave the word
default in the Beginning and Ending X Value fields, this will cause the graph of f to begin and end at
the beginning and ending x values of the axes (which we had defined to be from -5 to 5 above). In the
options field, note that Plot Style defaults to normal (instead of thick or thin), and Display Equation
defaults to yes. This latter value means that the equation f(x) = x^2 will be displayed to the right of the
axes when the graph is constructed. Click the Finish Graph Of A Function button. Upon returning to the
main window, click the View item to view our page. It should look like the screen shot below.

9

Saving Your Page: Click the Hide Constructed Page button to return to the main window. At the top
left, click the Save item. Enter the name Tutorial.html in the text box. Note that all file names should
have the extension .html to indicate that they are web pages. The file will be saved in the MyWebPages
folder inside the CaluMath directory.

When you click Save, a Java applet will appear, asking for your permission for the web page to save
the file to your hard drive. Click Run to run the applet and save the file.

If you now minimize the CaluMath Page Maker and go to the MyWebPages folder inside the CaluMath
directory, you should see the file Tutorial.html. If you open it in a web browser, you will see the page
you have created. Note that the Click Here To Edit Text button, which was visible when the page was
viewed in the CaluMath Page Maker, is no longer visible.

Buttons: We will now construct a button, and use this to highlight some general CaluMath features that
apply to many Html objects in addition to buttons. When the user clicks on the button we construct, the
graph of g(x) = B*x^2 will appear on the axes. In the Main Menu, click Buttons and Boxes and click
Button in the sub-menu. Almost every object in CaluMath must have a name, it helps if the name for
the button is descriptive of what the button does. In Button Name enter GraphGButton. Note that

10

names in CaluMath cannot contain spaces, must begin with a letter, and can only contain letters,
numbers, and the underscore character. The Button Label is the text that appears on the button; enter
Graph a Function. All Html items, such as paragraphs, buttons and boxes can be placed anywhere you
choose. For practice in doing this, we will place the button so that it appears immediately after the
paragraph we created (and before the axes we constructed). To accomplish this, we use the Window,
Insert Options, and Insert Target fields. The only window we have is the page we are constructing,
which automatically has the name CM_MainWindow (if the page we were constructing opened new
windows, the names of these windows would appear in the Window field). In Insert Target, select
Paragraph0, which is the name for the paragraph we constructed. In Insert Options, select insert after
so that the button we create will appear after Paragraph0. When you are done, click the Finish Button
button. Below is a screen shot for the entries in the Button screen.

Click the View item to see the page. Note that the Graph a Function button appears between
Paragraph0 and the axes. If you click on the button nothing happens. We now give the button
instructions that it will execute when it is clicked.

Button Action: We now construct a Button Action. You can think of a Button Action as a container;
inside the container you place all of the items that you want executed when the button is clicked. In the
Main Menu, click Buttons and Boxes and click Button Action in the sub-menu.

We will use the creation of this Button Action as an opportunity to discuss naming conventions in
CaluMath. Recall above that we defined the function Axes1 and we defined the function f. We also
constructed the graph of f in Axes1. CaluMath automatically gives the graph the name Axes1.f. This is
true for all graphical items we construct in Axes1. If we construct a point named Point1 in Axes1, then

11

its true name is Axes1.Point1. It is important to understand this because that is the way it will be listed
in some menus in the CaluMath Page Maker. The button GraphGButton that we constructed above
does not belong to the axes Axes1 since it doesn't appear inside the axes. Instead the GraphGButton
button belongs to an object called the CM_ParentObject and its true name is
CM_ParentObject.GraphGButton. Most non-text items that do not belong to a set of axes automatically
belong to the CM_ParentObject. The only reason you need to be aware of this is that some menus will
display the true names of objects in the CaluMath Page Maker; in particular, that is the way the
GraphGButton button appears in the Button menu in the Button Action screen. Select
CM_ParentObject.GraphGButton (since we created no other buttons, this is the only choice). In the
Timing of Event menu, select When Button is Clicked; you will not be able to select the When Graph is
Clicked entry because of the type of button we are creating. Click the Finish Button Action button.

A pop up window appears which states: Now construct the item you want to add to your Button Action.
You can close this window. Note that You are in a Button Action appears in red above the Main Menu.
This reminds you that everything you now construct will be put in the Button Action container and
executed when the user clicks the button. For now, the only thing we want to do is graph the function
g(x) = B*x^2. So in the Main Menu, click Axes and Graphs and click Graph of a Function in the sub-
menu. In the screen that opens, select Axes1 and in the Function field, select g. Leave the word default
in the Beginning and Ending X Value fields, this will cause the graph of f to begin and end at the
beginning and ending x values of the axes. Click the Finish Graph Of A Function button. When you do,
a dialog box opens, asking if you want to continue adding items to your Button Action container, or
finish your button action. Click Cancel to stop adding items to your button action (if we wanted to
continue adding more items we would click OK). This returns us to the main window. If you
mistakenly click OK when you do not want to add more items to your Button Action container, you can
click on Buttons and Boxes in the main menu and End Button Action, Conditional, Etc. in the sub-
menu in order to exit the Button Action.

Click the View item to view your page. Click on the Graph a Function button to display the graph of
g(x) = B*x^2. If you click the button repeatedly, you will see that the the page creates multiple copies
of the graph of g (if B>0) which does not seem useful. This highlights one issue of CaluMath web page
construction that you should keep in mind. If you only want a user to click on a button once, the Button
Action for that button should include the instruction to hide the button after they click it so it will no

12

longer be visible (and so cannot be clicked again).
Instead of doing that, we will add more items to the Button Action to make the button more useful. We
will do the following things:

1. Hide Paragraph0 to gain practice in hiding objects.
2. Redefine B to be a new Random Integer
3. Remove the old graph of g when we construct a new one.

To do this, click Buttons and Boxes from the Main Menu and click Add To Button Action from the sub-
menu. Select CM_ParentObject.GraphGButton_ButtonAction from the Button Action menu. A pop up
window instructs you to construct the item you want to add to the Button Action. Again You are in a
Button Action appears above the Main Menu.

1. To hide Paragraph0, click the Visibility item in the Main Menu and click Hide and Unhide in
the sub-menu. In the Object field, select Paragraph0 and in the Visibility field, select invisible.
Click the Finish Hide and Unhide button. You will again be prompted with the dialog box
asking if you want to add more items to the Button Action container. Click OK, since we want
to construct items 2) and 3) above. You can close the pop up window that says Add another item
to your Button Action when it appears.

2. To redefine B, click Functions and Constants from the Main Menu and click Define A Constant
in the sub-menu. We repeat our construction of B from above: Enter B in the Constant Name
field. Click the Create A Random Number button. Select NonZero Random Integer and enter -4
and 4 for the range of the integer. Click the Create the Random Number button, which
places the correct CaluMath code for the random number in the Constant Definition field, and
click the Finish Define A Constant button. You will again be prompted with the dialog box
asking if you want to add more items to the Button Action container. Click OK, since we want
to construct item 3) above. You can close the pop up window that says Add another item to your
Button Action when it appears.

3. To remove the old graph of g, click the Visibility item in the Main Menu. We should remove the
old graphs of g, and not just hide them, so only one graph of g exists at a time. Therefore click
Remove Graph in the sub-menu. In the Graph menu, select Axes1.g and then click the Finish
Remove Graph button. Since we do not want to add anything else to the Button Action, click
Cancel in the dialog box that opens. Close the pop up window that says You have finished your
Button Action.

Cut and Paste: There is one problem with our Button Action. It contains four items that will be
executed in following order:

1. Graph g.
2. Hide Paragraph0.
3. Redefine B to a new Random Integer.
4. Remove the graph of g.

Therefore, the graph of g will be created and immediately removed. To fix this, we must remove the old
graph of g before we construct a new graph of g. To do this, we will Cut and Paste the remove the
graph of g item and paste it at the beginning of the Button Action. At the top right of the CaluMath
Page Maker main window, click the Cut & Paste item. A window opens that displays every item you
have created. The Button Action contains several items, click the button corresponding to the Button
Action item (which should be item 9) to reveal the contents of the Button Action. We want to cut the
Remove Graph: Axes1.g item and place it before the Graph Of A Function: g axes Axes1 item. To do

13

this, place your cursor anywhere on the Remove Graph: Axes1.g item and drag it a small way across the
item as is shown in the screen shot below. It is better if you only drag it a small amount and do not try
to start at the beginning of the line and go all the way across. After highlighting a small portion of the
that line, go to the top of the menu and click the Cut button. You will see the Remove Graph: Axes1.g
entry disappear. Now click the line that says Graph Of A Function: g axes Axes1 which is where you
want to place it, and go top the top and click the Paste Before button. This tells the CaluMath Page
Maker to take the item you cut and paste it before the item on which you clicked.

The Cut & Paste window will reload, and a dialog will ask if you want to paste the cut item again in a
new position. Since we do not want to do this, click Cancel. When you click the button corresponding
to the Button Action to reveal its contents, you will see them listed in the order we want.

You may realize that there is a potential problem with the Button Action. The very first time the user
clicks on the GraphGButton, the Button Action will try to remove the graph of g; however the first time
the user clicks on the button, there is no graph of g to remove. Fortunately, CaluMath checks whether

14

objects exist before it tries to remove them; if the object to be removed does not exist, CaluMath
recognizes this fact and does nothing and does not cause an error to be produced.

Click the Hide Constructed Page button at the top left to exit from the Cut & Paste window and return
to the CaluMath Page Maker main window. Click View to observe your page. As you click the Graph a
Function button, you will see graphs drawn in different colors as the values of B changes. However, all
is not well with the graph. Sometimes the graph of g is invisible, this is because the axes are scaled to
the graph of f that originally appeared in the axes; negative y values (which occur when B is negative)
do not appear on the graph. In addition, the equation to the right of the axes always says g(x) = B*x^2,
which doesn't give us an idea of the value of B. To address these issues, we will discuss editing our
page.

Editing the Page: There are two ways to edit the page, and we will illustrate both of them now. From
the CaluMath Page Maker main window, click the Edit item at the top right. A window similar to the
Cut & Paste window opens. As before, you can click on the button corresponding to the Button Action
to see the items it contains. To edit an item, you simply click on the line corresponding to it; this will
immediately take you back to the screen where it was created. Go to line 7 which begins with Draw
Axes: Axes1, and click somewhere near the middle of the line. You will immediately be taken to the
screen where the axes were constructed. In Beginning Y Value enter -100 and in Ending Y Value enter
100. This will give us a good view of the graph of g(x) = B*x^2 when B takes on values from -4 to 4.
Click the Finish Draw Axes button to return to the main window.

We will now edit the graph of g by using the drop down menu below the Main Menu. Editing using this
menu is generally faster than using the Edit item at the top of the main window, because the Edit item
requires the Edit window to load, which can cause a small delay if the page is large. The items in the
Edit drop down menu are organized in the same way as those in the Edit window, in fact, they have the
same numbering system. Note that Axes1 is item 7, and you can see that the graph of f is a child of the
axes. Similarly, the Button Action is item 9, and you can visually see the four items it contains. Select
the graph of g (which should be item 9.2), and click the Edit Selected Item button. This returns us to
the screen where we graphed g. We will use the Alternate Displayed Equation option to change how the
graph of g is displayed. There is also an explanation of this option in the Help for Graph Of A Function
button. Whatever we enter in this field will appear instead of the text that normally appears to the right
of the axes for the graph of g. The normal text that appears is g(x) = B*x^2, and we consider the g(x) to
be the left hand side of the equation and the B*(x^2) to be the right hand side. In Alternate Displayed
Equation field, if we type cm_lhs, it will be replaced by the left hand side of the text that normally
appears (meaning g(x)). If we type cm_rhs, it will be replaced by the right hand side of what normally
appears (meaning B*x^2). If we type cm_color, it will be replaced by the color of the graph. In the
Alternate Displayed Equation field, we will enter cm_lhs = cm_evalm(B)*x^2. When it is displayed,
cm_lhs will be replaced by g(x) and the B will be mathematically evaluated. Therefore the result will
be text such as g(x) = 2*x^2 if B were 2. If we entered The cm_color graph is cm_evalm(B)*x^2, as we
repeatedly clicked the Graph a Function button, the text displayed would be similar to The blue graph
is 3*x^2. Click the Finish Graph of A Function button to return to the main window. Click View to view
your page and repeatedly click the Graph a Function button to view the graphs of g for random values
of B.

Save Your Page: At this point you should save your page by clicking the Save item at the top left of
the main window.

15

We now begin the construction of the web page concerning graphs and their derivatives that was
described on page 4. Keep in mind that we are using this page as a vehicle to introduce you to the
main objects in CaluMath, how they are constructed, and concepts to keep in mind during their
construction.

Container Like Items: There are several other items that are similar to Button Actions in that they
contain items that are to be constructed together. They are Routines, For Loops, and Conditionals. We
will discuss them later in the tutorial.

 The Clipboard: Since the GraphGButton has served its purpose of giving you experience with the
construction of buttons and Button Actions, we will now remove the GraphGButton from the page
using the Cut & Paste menu. Click on the Cut & Paste item at the top right of the main window.
The Cut & Paste screen will load. Notice that the last item listed (which is number 10) is the following:

10. This is the ClipBoard
1. This is the Inside of the ClipBoard

The Clipboard is an area where you can cut and paste items that you do not need, but which you may
be interested in modifying and placing back in your web page at a later time. Items in the Clipboard
do not appear in the web page, they instead are in a storage area and are invisible. If you save a page,
the items in the Clipboard are saved with the page so they can be accessed the next time you load the
page into the CaluMath Page Maker. We do not need the GraphGButton or the Button Action
corresponding to it, since our sole purpose in creating it was to help you learn about buttons. We will
cut and paste the button and the Button Action to the clipboard. There are several things to keep in
mind when you are cutting and pasting. After stating these items we will illustrate them with examples
below :

1. If you move a parent object, all of the children are automatically moved with it. For example, if
we cut Axes1 and placed it in a different location in the document, then the graph of f would
automatically be moved also. If you cut a Button Action and place it in the Clipboard, all of the
items contained in the Button Action are automatically moved with it.

2. The beginning and ending items that you highlight during cutting and pasting must have the
same parent, or they each must be top level elements in the web page. We will illustrate this
below.

3. Items, such as Button Actions, that are actually containers containing objects have buttons
associated with them in the cut and paste window. If you click on the button, the first line that is
revealed says the type of item it is and below it are listed the children inside the container. To
highlight a section of the document that begins with a Button Action (or other container-type
item), you must click the button to reveal the items in the container. Highlighting the first line
(that indicates the type of container it is) signifies that you are highlighting the entire container.

Here are some examples:

Below is an acceptable region to highlight for cutting and pasting, since both Paragraph0 and
Axes1 are top level items in the page. Note that the graph g will automatically be included, since it is a
child of Axes1.

16

This is also an acceptable region to highlight for cutting and pasting, since both the Remove Graph g
and the Graph of a Function items are children of the Button Action.

This is not an acceptable region to highlight, since Paragraph0 is a top-level item in the page and Graph
of a Function is a child of a Button Action.

17

Finally, the screen shot below shows an acceptable region that we actually want to use to cut and paste
the button and Button Action to the Clipboard. Please click the button associated to the Button Action
to make sure the children are visible. Then place your cursor somewhere on the GraphGButton item
and drag it down to the Button Action item.

After doing this, click the Cut button, then click the line that says

This is the Inside of the ClipBoard
and then click the Paste After button. The cut and paste window will reload with your changes. Click
Cancel in the dialog box that asks if you want to paste the copied item again. When you are done, the
cut and paste screen should look like the screen shot below. Note that both the Button and the Button
Action are in the Clipboard.

Cut and Paste Warnings: You can do a lot of damage to your document by cutting and pasting items
without giving thought to what you are doing. These are principles to keep in mind when cutting and
pasting items:

18

1. If you remove a button from your document, make sure you remove its associated Button
Action. If you remove the button and leave the Button Action, you will encounter an error (and
your page will not load properly), since the Button Action depends on the existence of its
associated button. In general, if you remove an object, you must also remove associated objects
that depend on it.

2. Do not place items in positions where they are not available when they are required. For
example, our graph of f in Axes1 requires that the function f be defined. If we cut and paste f to
the end of the web page, an error will occur, because the page will be trying to graph f before
the function has been defined. In addition, if we cut and paste the constant A to the end of the
document, errors will occur, since Paragraph0 evaluates the value of A, which means that the
constant A must exist before Paragraph0 is created in the web page.

While we have the cut and paste window open, and thus, can see the structure of our web page, this
gives us an opportunity to discuss the placement of constants and functions in CaluMath web pages.

Constants and Functions Placement: When you define constants and functions, CaluMath usually
places them at the top of your web page in the order that you define them. This is done so that you can
access them anywhere in your web page (because they will automatically appear before items such as
paragraphs and axes). If you decide, as you are constructing your page, that you should have defined
new constants and functions, then you can do this without worry; CaluMath will automatically place
them at the top of your page so they will be available to objects you previously created. The only
exceptions to this rule are the following:

1. If you are in a Button Action, or a similar type of container item such as a Routine, For Loop or
Conditional, then constants and functions you define while in that Button Action are placed in
the Button Action instead of being moved to the top of the page. This makes sense, since you
want the items in a Button Action to only be created when the user clicks a button, instead of
being created as the web page loads.

2. Some constants and functions are defined in terms of points that appear in a set of axes. For
example, if you construct two points, Point1 and Point2 in the axes Axes1, you can define a
cubic function whose local maximums and minimums occur at Point1 and Point2. To define this
function, the function needs to know the position of Point1 and Point2, and the function will not
have this information if CaluMath moves the function to the top of the page before the axes and
points are created. There is an option in the screen for creating functions that allows you select
the name of the axes which the function requires in order to be defined correctly. This entry
will make the function definition a child of the axes, instead of moving it to the top of the
document. We will see an example of this in a minute.

In the next part of the tutorial, we will construct two points in Axes1, define the function h to be
the cubic function whose local maximum and minimum occur at the two points. We will also
define the derivative h′ and graph the function and its derivative. We will enable the user to drag
the two points and thus change the definition of the functions and their graphs. Finally we will
ask them to drag the graph so that h(3) = h′(3)+12 and check whether their answer is correct.
If you still have the cut and paste window open, click the Hide Constructed Page button to return to the
main window.

Edit Axes: Since we are no longer going to graph g (which required a wide range of y values), let us
edit Axes1 so that the y values only range between -5 and 25. This will give the user a clearer idea of

19

the y values on the graphs we construct. To do this, go to the drop down menu below the Main Menu
and select Draw Axes named Axes1. Click the Edit Selected Item button. In the screen that appears,
enter -5 in the Beginning Y Value field and enter 25 in the Ending Y Value field. Click the Finish Draw
Axes button.

Points: We now plot points at (-2,20) and (1,8) in Axes1. In the Main Menu, click the Axes and Graphs
item and click Plot A Point in the sub-menu. We will only concern ourselves with the required table at
the bottom of the screen that appears. CaluMath suggests a name for the point, however type Point1 in
the Point Name field. We have two choices, we can enter the x and y coordinates of the point (-2,20)
separately by entering -2 in the X Coordinate or [x,y] field and entering 20 in the Y Coordinate or
Blank field. Alternately, we can enter [-2,20] in the X Coordinate or [x,y] field and leave the Y
Coordinate or Blank field blank. This feature is true for most CaluMath fields that require x and y
coordinates, you can enter them separately, or you can enter the ordered pair, enclosed in brackets, in
the x coordinate field. Please note that coordinates are always enclosed in brackets, not
parentheses. The reason for this is that coordinates are technically arrays of numbers (meaning a list of
numbers) and most programming languages denote lists by enclosing the entries in brackets. Click the
Finish Plot a Point and Do Another Plot A Point button to create the second point. Enter the name
Point2 in the Point Name field, enter [1,8] in the X Coordinate or [x,y] field and click the Finish Plot
A Point button to return to the main window. Recall that the true name for these points are
Axes1.Point1 and Axes1.Point2 because they are plotted in Axes1. Below are screen shots of the two
ways to correctly enter the coordinates for Point2.

Standard Functions: We will now define h to be the cubic that has its local maximum and minimum
at Point1 and Point2. In the Main Menu select Functions and Constants and click Define a Function in
the sub-menu. Below is a screen shot of what you should enter. After the screen shot, we will discuss
each entry individually.

20

 1. In Apply Standard Function to Function Definition, select CM_MaxMinCubic. This instructs the
CaluMath Page Maker that you want to define a cubic whose maximum and minimum occur at
prescribed values.

 2. In The Function Definition, enter Axes1.Point1, Axes1.Point2. This indicates the two points
through which the cubic should go. CaluMath will automatically define the correct function for
us. There are a variety of ways you can enter this information; we list some of them here. All of
the following produce a cubic whose maximum and minimum lies at the points (-2,20) and
(1,8):

 a) Axes1.Point1, Axes1.Point2

 b) Axes1.Point1, [1,8]

 c) Axes1.Point1, 1,8

 d) [2,15],[1,8]

 e) 2,15,1,8

In general, CM_MaxMinCubic expects an entry of the form x1,y1,x2,y2, however it recognizes
that names of points or coordinates of points will account for two coordinates. Please note that
the following should not be used: 2,[15,1],8, since [15,1] is not the coordinates of a point on the
graph of h.

 3. In Function Name enter h and in Function Variable enter x. This means that the function will be
defined in terms of the variable x (you could chose a different variable, such as t if you desire).

 4. In Function Defined Using Points In These Axes select Axes1, since the function will only make
sense if it is placed as a child of Axes1. If this is not done, CaluMath will place the definition of
the function at the top of the page and the page will not load correctly since Axes1.Point1 and
Axes.Point2 will not have been constructed yet.

 5. In Update With Change In Parameters, select yes. A complete discussion of parameters will
take us too far afield at this juncture, however this item deserves some discussion at this point.
The definition of h depends on the position of the points Axes1.Point1 and Axes1.Point2. We
have two choices: if the points are moved we can redefine h to be the function whose graph

21

goes through the points' new positions, or we can decide to not change the definition of h, so
that its definition is no longer tied to the positions of the points Point1 and Point2. In our case,
we want the user to drag the points and update the graph, therefore we select yes in this field.

In this case, Axes1.Point1 and Axes1.Point2 are considered parameters for the function h, since
the definition of h depends on them. Usually you have to enter the parameters (enclosed in
brackets) on which the function depends in the Parameters field when you define the function.
Therefore we could have entered [Axes1.Point1, Axes1.Point2] in the Parameters field.
However when using standard functions (such as CM_MaxMinCubic) the CaluMath Page
Maker will automatically recognize any entry in the Function Definition field that consists of a
point or previously defined constant. It will not automatically recognize parameters in any other
case, and it will not automatically recognize parameters for any function that is not a standard
function. To be safe, you can always enter the parameters on which the function depends since
CaluMath will automatically remove duplicate entries between the entered parameters and those
that it calculates. Click the Finish Define A Function button to return to the main window.

Updatable Graphs: We now want to graph h, and do so in a ways that, as points Point1 and Point2 are
dragged, the graph is automatically updated. Using the Axes and Graphs item in the Main Menu, you
can graph functions, line segments, and circles and arcs. However these graphs are static; once they are
created, they can be removed, however they cannot be modified. What we want is to create an
Updatable graph; once these graphs are created, they can be updated to any type of graph as often as
you need. For example, if you create an updatable graph called Updatable1, it can be updated to the
graph of a function, then later updated to the graph of a circle, and later updated to the area between
two functions.

To create an updatable graph, click the Updatable Graphs item in the Main Menu and then click Make
Updatable Graph in the sub-menu. Enter the name Updatable1 in the Updatable Graph Name field.
Click the Finish Make Updatable Graph button to return to the main window. Creating the updatable
graph reserves computer resources to that it can be graphed quickly; the graph remains invisible until
you update the graph to the graph of a function, circle, etc.

Update To Function Graph: We now update the graph of Updatable1 to the graph of h. In the Main
Menu, click Updatable Graphs and click Update To Function Graph in the sub-menu. In the Axes field
select Axes1, in the Function field select h and in the This Updatable Graph field select Updatable1. In
the Update Upon Function Redefinition field select yes; this ensures that as h is redefined, the graph
will be automatically updated. Click the Finish Update To Function Graph to return to the main
window. Click the View item to view your page. Below is a screen shot of the page we constructed.

22

Note that the defining equation of h displayed is awkward, there is really nothing that can be done
about this, except for editing Updatable1 and choosing not to display the equation.

Dragging Graphs: We now activate Axes1 so the user can drag points. In the Main Menu, click
Dragging Objects and click Activate Dragging Graphs in the sub-menu. Below is a screen shot; we will
discuss many of the items individually.

23

1. Objects to Drag: There are a variety of choices for Objects to Drag, and you may select
multiple items. The three items that are draggable in Axes1 are the two points and the graph
Updatable1 (because the graph of f is static and cannot be dragged). You can also select
categories of objects to be dragged, such as all points or all graphs. Select Point1 and Point2 by
clicking down on Point1 and then holding the Ctrl key on your keyboard and clicking on
Point2.

2. Restrictions on Dragging: select arbitrary movement. Selecting x always increasing is
appropriate for when you want to capture the user's mouse movement and use it to define a
function. In that case any motion of the mouse from right to left is ignored, so that a well
defined function can be created.

3. X Precision and Y Precision rounds the coordinates of the mouse while dragging to a specified
number of decimal places. You can also select .25 or .5 to round off the coordinates to the
nearest fourth or half respectively. If you select CM_DragXPrecision or CM_DragYPrecision, it
means that you have previously defined the constants CM_DragXPrecision and
CM_DragYPrecision to be one of the numbers 0, 1, 2, … ,12, .25 or .5. In that case, the vales
these constants define will be used in rounding.

Rounding is a very important consideration when designing a page which includes graphs to be
dragged by the user. For example, suppose you ask the user to drag a graph of a function h so
that h(1) = 7. To do this, you would probably want the Y precision set to either .25, .5 or 0, so
that the user has an easier time of obtaining integer y values. If you set Y Precision to 3, there is
a good chance that the user would obtain h(1) = 7.012 or h(1) = 7.004, but will not achieve an
integer value for h(1). Often selecting .25 for X Precision and either .25, .5 or 0 (depending on
the scaling in the y direction) is appropriate for Y Precision. For your page, select .25 for X
Precision and 0 for Y Precision.

4. Promote Integer Coordinates: is another way CaluMath enables the user to be successful
dragging their mouse over a desired point with integer coordinates. One might think that
selecting X Precision and Y Precision to be 0 might be the best way to ensure that a graph will
have integer coordinates. Unfortunately, this choice leads to graphs such as the one below, in
which the page captured the user's mouse movements and used them to create a graph. Clearly
this type of graph consists of straight segments, which may seem slightly unnatural for the user,
since the path of their mouse probably will not consist straight paths. The graph does have the
property, however, that it goes through many points with integer coordinates.

24

As an alternative, the graph below was obtained by setting the X and Y Precision to 3, however
yes was selected in Promote Integer Coordinates and both Integer Coordinates X Tolerance
and Integer Coordinates Y Tolerance were set to 4. The effect of this is that a typical mouse
coordinate is rounded to 3 decimal places, however when the mouse is within 4 pixels in the x
and y direction of a point with integer coordinates, the mouse moves to the point with integer
coordinates, and the rounded mouse position is captured. In the screen shot below, you can see
that the graph, which was drawn freehand on the computer screen, is much more natural,
however it goes through many points with integer coordinates (for example (4,4)), even though
most coordinates were rounded to 3 decimal places.

For our page, we are not capturing the user's mouse motion, we are only interested in allowing
them to move Point1 and Point2. Therefore select no in Promote Integer Coordinates. Because
we selected no, any selection in Integer Coordinates X Tolerance and Integer Coordinates Y
Tolerance is ignored.

 5. Create Time Function: This allows you to capture the user's mouse movements and the time
when the user's mouse was at that position. This can be used to construct an animation that
replays the motion of the user's mouse. We have no need for this at this time, therefore leave the
default value of no in Create Time Function.

Click the Finish Activate Dragging Graphs button to return to the main window. Click the View item to
view your page and drag Point1 and Point2 to new positions and observe that the definition of h is
updated and the graph reflects the new definition of h.

One of the powerful features of CaluMath is that you can design special routines that are executed
either at the beginning of when the user starts to drag their mouse, while they are dragging their mouse,
or after they drag their mouse. For example, suppose as the user drags their mouse, we want a
paragraph to display some information about the graph, for example, the value h′(-1), meaning the
value of the derivative of h at -1, and h(-1).

We emphasize that we are doing this to give you practice with Routines, and further experience
creating graphs of functions rather than for pedagogical reasons. It should be emphasized however, that
the information you display or do not display has important pedagogical implications, and CaluMath's
power in this regard means it can be used to produce a wide variety of non-traditional problems.

Routines: A routine is a container that contains items you want constructed when the routine is
executed. In this respect, it is very much like a Button Action: the items in a Button Action are

25

constructed when the user clicks a button while the items in a routine are constructed when you instruct
the page to execute the routine. Please note that there is a difference between defining a routine and
executing a routine. When you define a routine, you tell CaluMath the items that you want it to
construct sometime in the future. When you execute a routine, you are actually telling CaluMath to
construct those items. As the user drags their mouse we want a paragraph displaying the above
information to appear, and as their mouse position changes we will remove the old paragraph and
replace it with a new one with the updated information. Since we want to display values of the
derivative, we need to define h′ first.

Derivatives: Unfortunately, a CaluMath computer algebra system that calculates derivatives, factors
polynomials, and does symbolic calculations is still in development and will not be part of release 2.0
of CaluMath. This means that, in general, you have to define the derivative of a function yourself in the
same way you defined the original function. However, standard functions in CaluMath have derivatives
that CaluMath can automatically calculate. To define the derivative of h, click on Functions and
Constants in the Main Menu and click on Define a Function in the sub menu. In Apply Standard
Function to Function Definition, select CM_MaxMinCubicDerivative, this means it will calculate the
derivative of the function h (which was defined using the CM_MaxMinCubic selection). In The
Function Definition, field, enter Axes1.Point1, Axes1.Point2. This means that the function defined will
be the derivative of the function that is a cubic with a maximum and minimum at the points Point1 and
Point2. In Function Name, enter hprime; this will automatically be displayed as h′ if you were to graph
it. We should note that all names in CaluMath must begin with a letter and can contain only
letters, numbers, and the underscore character. Enter x in Function Variable and select yes in the
Update With Change In Parameters field, since we want h′ to be updated as the points move. Finally,
and very importantly, select Axes1 in the Function Defined Using Points In These Axes menu, so
that the definition of hprime is placed as a child of the axes H and is not placed at the beginning of the
web page.

Graph the Derivative: We now graph h′, and see how it changes as the graph of h is updated. Since
we want the graph of h′ to be updated, we will construct a new Updatable Graph which will be updated
to the graph of h′. In the Main Menu, click Updatable Graphs and click Make Updatable Graph in the
sub-menu. Enter the name Updatable2 in the Updatable Graph Name field. Click the Finish Make
Updatable Graph button to return to the main window. We now update Updatable2 to the graph of h′ by
clicking Updatable Graphs in the Main Menu and clicking Update To Function Graph in the sub-menu.
In the Axes field select Axes1, in the Function field select hprime and in the This Updatable Graph field
select Updatable2. In the Update Upon Function Redefinition field select yes; this ensures that as
hprime is redefined, the graph will be automatically updated. Click the Finish Update To Function
Graph to return to the main window. Click the View item at the top of the page to view the page. Note
that as you drag Point1 and Point2, the graphs of h and h′ are updated.

If you have not saved your page, it would be wise to do this now. Click Save at the top left of the
CaluMath Page Maker to do this and click Run if the Java applet prompt presents itself.

You may notice that the graph of f is no longer necessary and actually makes the page a little cluttered.
Click the Cut & Paste item at the top of the CaluMath Page Maker so we can move the graph of f to the
Clipboard. After the cut and paste window loads, click somewhere near the middle of the line
corresponding to the graph of f, then click the Cut Button. After doing this, click on the This Is The
Inside Of The Clipboard line and click the Paste After button. When the cut and paste window reloads,
you will notice that the graph of f is now the first line in the Clipboard. Click the Hide Constructed
Page button to return to the main window.

26

Edit Axes: Click the View item and look at your page. It would probably be improved by having the y
values in the axes go down to about -15; to do this, edit Axes1. Select Draw Axes named Axes1 from
the drop down below the Main Menu and click the Edit Selected Item button. Enter -15 in the
Beginning Y Value field and click the Finish Draw Axes button.

Drag Routine: We now create a routine that creates a new paragraph that displays h(-1) and h′(-1) and
removes the old paragraph that displayed these values previously. We will then assign the routine to the
Point1 and Point2 so that the routine is executed as the points are dragged.

In the Main Menu, click Conditionals and Routines and click Routine in the sub-menu. Enter
DragRoutine in the Routine Name and click the Finish Routine button. A pop up window states Now
add the item you want to your Routine. Close the pop up window. Note that You are in a routine is
displayed in red above the main menu; this reminds you that every item you create will be added into
the routine container. Since we want to create a paragraph, click Text and Html in the Main Menu and
click Text in the sub-menu. Enter Paragraph2 in the Name field if it does not already appear there and
select x-large for Text Size. Enter Note that h(1)=cm_evalm(CM_Round(h(1),3)) and h′(1)=
cm_evalm(CM_Round(hprime(-1),3)).. In the large text box. Note that this will cause the values h(-1)
and h′(-1) to be evaluated mathematically and rounded to 3 decimal places. Click the Finish Text
button. In the dialog box that pops up, click OK, since we want to add more items to our Routine.

Remove Html: After closing the Add another item to your Routine window, click Visibility in the Main
Menu and click Remove HTML from the sub-menu. Select Paragraph2 in the Object field and click
the Finish Remove HTML button. In the dialog box, click Cancel, since we do not want to add any
more items to our routine. Close the You have finished your Routine window.

Note that we want to remove the old paragraph before creating the new one, however the order of the
creation and removal is currently reversed We saw this problem earlier when we wanted to remove the
old graph of g before creating a new graph of g. We could cut and paste the remove paragraph item
before the create Paragraph2 item, however we will demonstrate a different technique that occasionally
comes in handy. This will demonstrate that editing a container element, such as a Routine, Button
Action, Conditional or For Loop (but not a set of axes), allows you to edit its children.

Editing A Routine: To edit the Routine, select the Routine Named DragRoutine entry from the drop
down menu below the Main Menu and click the Edit Selected Item button. In the screen that opens,
click the Edit The Individual Entries In The Routine button. Note that this causes the Finish, Cancel
and Delete buttons for the Routine to be invisible and adds a set of buttons concerning the children of
the Routine. In the drop down menu that appears, select Remove HTML named. There are two choices
for what we can do, we can either click the Edit Highlighted Object to edit it, or we can click the Move
Highlighted Object Up button, to make it appear earlier amongst the children. Click the Move
Highlighted Object Up button. A screen shot is below.

27

After doing this, you will see that the Remove HTML element is before the Text Named Paragraph2
entry. Click the End Editing Individual Objects button. This reveals the Finish Routine button which
you can now click. Close the The changes to the Routine have been made window.

Routine For Dragging: We have now defined the routine DragRoutine. We now need to indicate when
the routine should be executed. For arbitrary routines, you would do this by clicking Conditionals and
Routines from the Main Menu and clicking Execute A Routine from the sub-menu. However, we want
this routine to be repeatedly executed as the user drags Point1 and Point2. To accomplish this, we need
to do this a different way. Click Dragging Objects from the Main Menu and click Routine For Dragging
from the sub-menu. In the Graph or Sliding Scale menu you will find a list of all the objects that can be
dragged. In the Routine For Dragged Object menu you will find a list of all of the routines that have
been created. In the When To Execute Routine menu you can select to execute the routine after the
object has been dragged, while the object is being dragged, or at the beginning of the drag, when the
user first clicks down on the object.

We want DragRoutine to be execute whenever Point1 or Point2 is moved; therefore we should
associate it to these two objects. You could instead associate it to Axes1; in this case, it would be OK,
however in many situations it is not a good idea to associate a routine to the axes. If we associate
DragRoutine to the two points, it will only be executed when the points are dragged. If we associate it
to the axes, DragRoutine will be executed anytime any object in Axes1 is dragged. In our particular
case, it doesn't matter since we are only allowing the two points to be dragged. However if Axes1
contained many objects that could be dragged, associating the routine to the axes would cause the
routine to be executed whenever any object is dragged, even though dragging those other objects would
not update the definition of h nor require Paragraph2 to be removed and rewritten. In other words, we
would be removing and reconstructing Paragraph2 for no reason. Dragging objects places a great
demand on the computer, since calculations must be done quickly each time the mouse moves. It makes
sense, therefore, to avoid unnecessary calculations.

Please do the following:

1. In the Graph or Sliding Scale menu select Axes1.Point1 and in the When To Execute Routine
menu select After Dragging Object. Click the Finish Routine For Dragging and Do Another
Routine For Dragging button. Close the pop up window that appears.

2. In the Graph or Sliding Scale menu select Axes1.Point1 and in the When To Execute Routine
menu select While Dragging Object. Click the Finish Routine For Dragging and Do Another
Routine For Dragging button. Close the pop up window that appears.

3. In the Graph or Sliding Scale menu select Axes1.Point2 and in the When To Execute Routine
menu select After Dragging Object. Click the Finish Routine For Dragging and Do Another
Routine For Dragging button. Close the pop up window that appears.

4. In the Graph or Sliding Scale menu select Axes1.Point2 and in the When To Execute Routine
menu select While Dragging Object. Click the Finish Routine For Dragging button.

The above four steps mean that DragRoutine will be execute while Point1 and Point2 are being dragged
and at the moment the user stops dragging the points. View your page and observe that Paragraph2
appears when the points are dragged and is constantly updated.

We conclude this page by presenting the following the problem for the user:Drag the two points so that
h(3) = h′(3) + 12. To accomplish this we will need to

28

 1. Construct a paragraph displaying the question.

 2. Construct a button that the user clicks after they have completed the task and wants their answer
checked.

 3. Create a Button Action that contains the items to be constructed when the button is clicked. The
Button Action needs to do the following:

 a) Check whether h(3) = h′(3) + 12 is true. This requires that CaluMath Comparison to be
done.

 b) Provide a response if h(3) = h′(3) + 1 is true. This requires a CaluMath Conditional..
 c) Provide a different response if h(3) = h′(3) + 1 is not true. This requires a CaluMath

Conditional..
We do the above items to complete the page.

Paragraph: Our page still contains Paragraph0, which is now serving no useful purpose, so we edit it
to contain the information we want. Select Text Named Paragraph0 from the drop down menu below
the Main Menu and click the Edit Selected Item button. Select large in the Text Size menu and in the
large text box, enter the following description (which you can cut and paste from this tutorial
documment):

Below are the graphs of two points, the graph of a function h which has a maximum or minimum at
each of the two points, and the graph of h′. If you drag either of the points, the definition of h will
change so that it becomes the function whose graph goes through the new positions of the points. The
graph of h′ will also change so that it is always the derivative of h.
Please drag the points so that the functions h and h′ satisfy the following equation: h(3) = h′(3) + 12.
When you have finished this task, click the Check Answer button.
Note that any line breaks you include in the text box are transferred to the web page. Click the
Finish Text button.

Button: We now construct a Check Answer button. Click the Buttons and Boxes item in the Main
Menu and click Button in the sub-menu. Enter CheckAnswerButton in the Button Name field and enter
Check Answer in the Button Label field. Click the Finish Button button.

Button Action: We create a Button Action for the Check Answer button. Click Buttons and Boxes in
the Main Menu and click Button Action in the sub-menu. Select
CM_ParentObject.CheckAnswerButton in the Button menu. Click the Finish Button Action button.
Close the Now construct the item you want to add to your Button Action window that pops up. We will
now add items to our Button Action.

Conditional: We now add a conditional to our routine. The conditional will check whether h(3) equals
h′(3) + 12, and if it is, it will display a paragraph saying that our answer is correct. To do this, click
Conditionals and Routines in the Main Menu and click Conditional in the sub-menu. In the screen that
opens, select if in the Branching Possibilities menu and enter CorrectAnswerConditional in Conditional
Name (recall that names in CaluMath cannot contain spaces). You can think of a Conditional as a
container, similar to a Button Action or a Routine. For a Condition with Branching Type if, the items
in the container are executed if a certain condition is true. Click the Finish Conditional button to begin
adding items to the Conditional container. Close the Now do the comparison for the if window. We are
immediately taken to a screen in which we enter the condition that must be satisfied in order for the

29

items in the Conditional container to be executed. Enter h(3) in the First Term field and enter
hprime(3)+12 in the Second Term field. Select = in the Comparison field and enter .00001 in the
Precision field. This means that the First Term and Second Term will be evaluated as numbers (since
the comparison is =) and they will be considered to be equal if they are within .00001 of each other.
Note that equals is a possible selection in the Comparison field; this selection should be used for entries
that are not numbers. Incidentally the selection in should be made if you want to determine whether
First Term is an element of an Array that is entered in Second Term.

It should be noted that you could enter three more conditions on the lines below and join them with OR
or AND. We have no need to do this, so we click the Finish Comparison button. In the dialog box that
appears, click OK since we want to add items to the Conditional container that are created if
h(3) = h′(3) + 1. Close the Add another item to your Conditional window when it appears. Note that the
text You are in a Button Action that contains a Conditional appears above the Main Menu to help you
keep track of the placement of the items you are creating.

Paragraph: We now construct a paragraph to be displayed if the user's answer is correct. In the Main
Menu, click Text and Html and click Text in the sub-menu. Select large in the Text Size field and enter
AnswerParagraph in the Name field. In the large text box enter h(3)=cm_evalm(h(3)) and
h′(3)=cm_evalm(hprime(3)), therefore h(3)=h′(3)+12. Click the Finish Text button. In the dialog box
that appears, click Cancel, since we do not want to create any other items when the user's answer is
correct. A new dialog box appears, asking if we want to add more items to the Button Action. We need
to add another conditional, that is executed when the user's answer is wrong, however, let us not do this
yet, so we can see if our first conditional is working properly. Therefore, click Cancel in this dialog
box. Close the You have finished your Button Action window.

View the page and interact with it. The easiest way to obtain the correct answer is to move Point2 so
that it has coordinates (3,12); since a maximum or minimum always occurs at Point2, h′ will always be
0 at the x coordinate of Point2. If you interact with the page and click the Check Answer button, you
should see an AnswerParagraph created each time your answer is correct. Note, however, that the
displayed text is probably not what you want. Due to the way JavaScript rounds numbers, a y
coordinate of 12 may displayed as 11.9999999999999 and instead of 0, a very small number in
scientific notation, such as 3.552713678800501e-15 is displayed. In addition, if you change the size of
the window, you may find that mathematical text has inappropriate line breaks in the middle of it. We
edit AnswerParagraph to take care of these problems.

Edit Paragraph: Select Text Named AnswerParagraph from the drop down menu below the Main
Menu and click the Edit Selected Item button. In the large text box enter (or cut and paste from this
document)

 Your answer is correct. Note that <mi>h(3)=cm_evalm(CM_Round(h(3),3))</mi> and <mi>h
′(3)=cm_evalm(CM_Round(hprime(3),3))</mi>, therefore <mi>h(3)=h′(3)+12</mi>.
Note that we have added CM_Round commands to round the input to 3 decimal places, this will ensure
that all numbers will be displayed correctly. Note that we also enclosed each mathematical expression
in a pair of <mi> </mi> tags. The tag <mi> signifies math-italics. Each opening <mi> tag must be
paired with a closing </mi> tag (which contains a / symbol). Pairs of <mi> tags should never be nested,
meaning that there is no reason to place pairs of these tags inside of another pair. The effect of these
tags is to cause the text inside of them to be displayed in italics, and to never allow a line break inside
the expression. Always pair an opening <mi> tag with an ending </mi> tag; if you fail to do this
your page will generate severe errors. When you view your page, it should work correctly.

30

Conditional: We now need to create a conditional that is executed if the student's answer is incorrect.
It will contain the following items:

1. An arrow drawn to the point with coordinates (3,h(3)) and an arrow drawn to the point with
coordinates (3,h′(3)).

2. A paragraph stating that the user's answer is incorrect and says that they should be able to
determine h(3) and h′(3) from the arrows drawn in the graph.

Recall that these conditionals are contained in a Button Action, so to make sure they are placed
correctly, we need to select Buttons and Boxes from the Main Menu and click Add To Button Action
from the sub-menu. Select CM_ParentObject.CheckAnswerButton_ButtonAction in the Button Action
field and click the Finish Add To Button Action button. Close the Now construct the item you want to
add to your Add To Button Action pop up window. We are now ready to create the conditional that will
be executed if h(3) does not equal h′(3)+12. Click Conditionals and Routines in the Main Menu and
click Conditional in the sub-menu. In the screen that opens select else in Branching Possibilities and
enter InCorrectAnswerConditional in Conditional Name. A Condition with Branching Type else
means that the items in this Conditional container are executed if the condition in the previous
conditional was not satisfied. In particular, this means that this else-Conditional must be placed
immediately after the previous conditional; no other items (such as paragraphs, buttons, etc) can be
placed between an if-conditional and an else-conditional. Click the Finish Conditional button. Close the
Now add the item you want to your Conditional window that pops up. Note that, in the if-Conditional,
you were immediately taken to a Comparison screen which allowed you to check if h(3) and h′(3)+12
were equal. That does not happen in an else-Conditional because an else-Conditional is executed if the
condition in the previous Conditional was not satisfied.

Arrows: We now create arrows pointing to the points with coordinates (3,h(3)) and (3,h′(3)). In the
Main Menu, click Axes and Graphs and click Arrow Graph from the sub-menu. Enter 3 in Arrow X
Coordinate and enter h(3) in Arrow Y Coordinate. Enter 50 in +/- X Length of Arrow Stem and 50 in
+/- Y Length of Arrow Stem. This will create a stem on the arrow of length 50 pixels in the positive x
and positive y directions, therefore the stem of the arrow will be in the positive x and y directions
compared to the tip of the arrow. This actually means the arrow will point down and to the left. In the
Optional Text field, enter the coordinates of the point (3, cm_evalm(CM_Round(h(3),1))). Since this
field expects text, we must use cm_evalm to evaluate h(3), and we use CM_Round to not have a
coordinate displayed with a large number of decimal places. In Text Color enter blue to make sure the
text stands out. Enter Arrow1 in the Arrow Name field at the top left corner of the upper table. Click the
Finish Arrow Graph button. In the dialog box click OK because we want to add more items to our
conditional. Close the Add another item to your Conditional window that pops up.

Arrows: We create another arrow that points to (3,h′(3)). In the Main Menu, click Axes and Graphs and
click Arrow Graph from the sub-menu. Enter 3 in Arrow X Coordinate and enter hprime(3) in Arrow Y
Coordinate. Enter -50 in +/- X Length of Arrow Stem and 50 in +/- Y Length of Arrow Stem. This will
create a stem on the arrow of length 50 pixels in the negative x and positive y directions, therefore the
stem of the arrow will be in the negative x and positive y directions compared to the tip of the arrow.
This actually means the arrow will point down and to the right. The choice of this direction ensures that
the two arrows will not intersect each other. In the Optional Text field, enter the coordinates of the
point (3, cm_evalm(CM_Round(hprime(3),1))). Enter Arrow2 in the Arrow Name field at the top left
corner of the upper table. In Text Color enter red to make sure the text stands out. Click the Finish
Arrow Graph button. In the dialog box that appears click Cancel to stop adding items to the

31

Conditional. Although it is true that we need to add a paragraph informing the user that their answer is
incorrect, it would be easier to cut and paste a copy of the AnswerParagraph we constructed above and
modify the text. Also click Cancel in the next dialog box that appears, so that we finish the Button
Action. Close the You have finished your Button Action window.

Cut & Paste: We will cut and paste a copy of AnswerParagraph. Click Cut & Paste to open the cut
and paste window, click the CM_ParentObject.CheckAnswerButton_ButtonAction to reveal the
contents of the Button Action and click both buttons corresponding to the conditionals to see the items
contained in the conditionals. Highlight an area in the middle of the line corresponding to
AnswerParagraph and click the Copy button. Click the line corresponding to Arrow2 and click the
Paste After button. The screen shot below shows the screen before the Paste After button is clicked .
Click Cancel in the dialog box that appears because we do not want to paste another copy of
AnswerParagraph in our page. Click the Hide Constructed Page button to return to the main window.

Edit Paragraph: Select Text Named AnswerParagraph that is a child of the
InCorrectAnswerConditional Conditional from the drop down menu below the Main Menu and
click the Edit Selected Item button. In the large text box enter (or cut and paste from this document) the
text: Your answer is not correct. Note that arrows have been drawn on the graph; these arrows
indicate points that should allow you to determine h(3) and h′(3). You can drag the points to a new
position and click the Check Answer button to try again. Click the Finish Text button.

In general names in CaluMath should be unique, for example, if you have two paragraphs with the
same name, and you want to remove one of them when the user clicks a button, the page will not know
which paragraph to remove. However, a more precise statement is that, at all times, there should only
be one object in existence in the web page with a given name. We are following this rule with our
two paragraphs named AnswerParagraph above, since only one of them will appear at a time. The fact
that these paragraphs have the same name can simplify your web page. For example, suppose we
wanted to include another problem in this page for the user to solve. Setting up that problem would
probably require removing anything that was created in response to the previous problem. In this case,

32

we would want to remove AnswerParagraph, and when we do this, we are removing the paragraph
that was created in response to a correct or incorrect answer. This is more simple than if we named the
paragraphs CorrectAnswerParagraph and IncorrectAnswerParagraph and then had to remove both of
them (because we would not know which one was present in the web page).

Remove Graphs and Remove Html: To complete the page, we should eliminate the previous
AnswerParagraph and previously drawn Arrow1 and Arrow2 if they click the Check Answer button
again. We now add these items to the Button Action for the Check Answer button. Click Buttons and
Boxes in the Main Menu and click Add To Button Action in the sub-menu. Select
CM_ParentObject.CheckAnswerButton_ButtonAction in the Button Action field and click the Finish
Add To Button Action button. Close the Now construct the item you want to add to your Add To Button
Action pop up window. Click Visibility in the Main Menu and click Remove Graph in the sub-menu.
Select Axes1.Arrow1 from the Graph menu and click the Finish Remove Graph And Do Another
Remove Graph button. Now select Axes1.Arrow2 from the Graph menu and click the Finish Remove
Graph button. In the dialog box that appears, click OK since we still need to remove AnswerParagraph.
Close the Add another item to your Button Action window that pops up. Click Visibility in the Main
Menu and click Remove HTML. Select AnswerParagraph from the Object menu and click the Finish
Remove HTML button. Click Cancel in the dialog box that appears since we do not want to add any
more items to the Button Action and close the You have finished your Button Action window that pops
up.

Cut & Paste: The final thing we must do is cut and paste the remove paragraph and remove arrows
items we just created to the beginning of the Button Action, so the old items are removed before the
new ones are created. Click Cut & Paste to open the cut and paste window, click the
CM_ParentObject.CheckAnswerButton_ButtonAction to reveal the contents of the Button Action. You
will see buttons corresponding to the two conditionals and buttons corresponding to each of the
conditionals. We want to cut the three remove items and place them before the first conditional. To do
this, you must click the Conditional: CorrectAnswerConditional button so we can see the first line that
says Conditional: CorrectAnswerConditional with branching if . That line signifies the conditional, and
we must place the three remove items in front of that line. Highlight the three remove items, as in the
screen shot below and click the Cut button.

33

Now place your cursor on the conditional line, as in the screen shot below, click the line, and then click
the Paste Before button.

The cut and paste window will reload. Close the dialog box that appears. If you click on the button
corresponding to the Button Action, the items should be placed as in the screen shot below.

Click the Hide Constructed Page button to return to the main window. Click view to view your page.

The page should work quite well, however we still have DragRoutine executing (which constantly
updates Paragraph2) as the points are dragged. We should cut and paste DragRoutine and the four
Routine for Dragging items below it to the Clipboard. This is left as an exercise for you. You may also
notice that sometimes the points (3,h(3) and (3,h′(3)) do not appear on the graph because the values
h(3) and h′(3) are outside the y values that are displayed on the graph. In this case, the arrows will be
missing or incompletely drawn. We could fix this by creating a conditional that checks whether h(3)
and h′(3) are between -15 and 25 and placing the commands to draw the arrows inside this conditional.
That is also left to you for an exercise.

Congratulations on completing this tutorial! Save your page!

34

